Warum "Computational Social Choice"?

- Bündelungsfunktionen
 - ▶ Social choice function SCF: $f: \mathbb{R}^n \to A$
 - Social choice correspondence SCC: $f: \mathbb{R}^n \to 2^A$
 - Social welfare function SWF: $f: \mathcal{R}^n \to \mathcal{R}$
- Bei 2 Alternativen ist Mehrheitswahl das einzige vernünftige symmetrische Verfahren (Satz von May, 1952)
 - Anonymität, Neutralität, Monotonie
- Für mehr als 2 Alternativen gibt es keine symmetrische SCF, selbst bei ungerade vielen Wählern mit strikten Präferenzen (Spezialfall des Satzes von Moulin, 1983)

Warum

"Computational Social Choice"?

- Es gibt vernünftige SCCs und SWFs auf mehr als zwei Alternativen.
 - z.B. anonym, neutral und monoton
- Bei mehr als zwei Alternativen, werden in der Praxis tatsächlich unterschiedlichste Verfahren eingesetzt
 - Relative Mehrheit, Borda, Vorzugswahl, Relative Mehrheit mit Stichwahl, etc.
- Sowohl in der Praxis als auch in der Theorie herrscht Uneinigkeit darüber welche Verfahren "gut" sind (geschweige denn welches Verfahren "optimal" ist)
 - Fokus dieser Vorlesung: Theoretische Analyse von Wahlverfahren

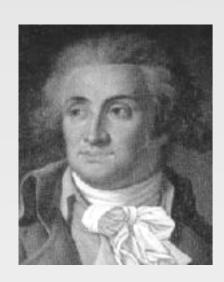
Warum

"Computational Social Choice"?

- Social Choice Theory
 - In der Regel werden Konzepte oder Verfahren mit Hilfe der axiomatischen Methode definiert.
 - Typische Axiome:
 - Variationen von Monotonie (z.B. Konsistenz)
 - Variationen von Unabhängigkeit (z.B. Anonymität und Neutralität oder Konsistenz bezüglich variablen Präferenzen, Alternativen oder Wählern)
 - Manche der so definierten Verfahren sind "einfach", manche sehen "kompliziert" aus.
- Ein Kriterium, das sowohl für die Praxis als auch für die Theorie von Bedeutung ist, ist die algorithmische Komplexität eines Verfahrens.
 - Kern dieser Vorlesung: P und NP

Eingeschränkte Präferenzen

- Eine Möglichkeit die Vielzahl von vernünftigen Verfahren zu umgehen ist die Präferenzen (üblicherweise vollständige Quasiordnungen) einzuschränken
- Modelle mit eingeschränkten Präferenzen, die eindeutige gute Verfahren (Condorcetverfahren) zulassen.
 - Zwei Alternativen
 - Mehrheitswahl
 - Dichotome Präferenzen
 - Approval voting
 - Single-Peaked Präferenzen
 - Medianwahl



Condorcet und Borda

- Zwei wichtige Eigenschaften von Bündelungsfunktionen sind die Condorcet-Eigenschaft und Konsistenz.
- Def.: Eine SCC f ist konsistent, wenn für zwei disjunkte Mengen von Wählern $N_1,N_2\subset N$ gilt:

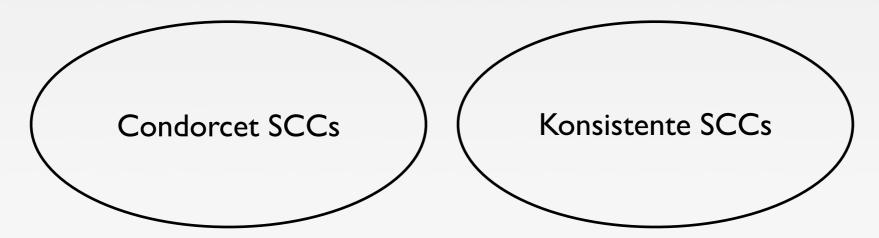
$$f(N_1)\cap f(N_2)
eq \emptyset \Longrightarrow f(N_1 \uplus N_2) = f(N_1)\cap f(N_2)$$
 wobei $f(S) = f((\succsim_i)_{i\in S})$ für $S\subseteq N$.

- Wenn zwei verschiedene Gruppen von Wählern einen Konsens erreichen, sollte dieser Konsens auch für die Allgemeinheit gelten.
- Alle üblichen Verfahren erfüllen eines dieser Axiome.

Konsistente Condorcet SCCs

Dichotomie

Kein Condorcetverfahren auf mehr als zwei Alternativen ist konsistent (Young et al., 1978).



 Vollständige Charakterisierung aller symmetrischen konsistenten Verfahren: Punkteverfahren (Young, 1975)

Algorithmische Aspekte

- Punkteverfahren (konsistente SCCs)
 - ▶ Trivialerweise effizient berechenbar (in P)
- Condorcetverfahren (Klassifikation nach Fishburn)
 - CI (Ergebnis hängt nur von der Dominanzrelation ab)
 - In P: Copeland (1951), Good (1971), Schwartz (1972), Unüberdeckte Menge (1977), Minimale Überdeckungsmenge (1988)
 - **NP-schwer**: Stabile Mengen (1944), Slater (1961), Banks (1985), TEQ (1990)
 - C2 (Ergebnis hängt nur von der Vergleichsmatrix ab. Nicht CI)
 - In P: Minimax
 - **NP-schwer**: Kemeny
 - C3 (Alle übrigen Verfahren)
 - **NP-schwer**: Dodgson, Young

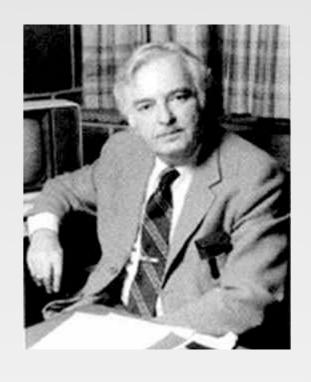
Das Kemeny-Verfahren

(John George Kemeny, 1959)

- ▶ Condorcet (1785), nur für drei Alternativen
- Kemeny (1959), Erfinder der Programmiersprache Basic
- Fobes (1991), www.votefair.org
- ► Harrenstein (2006, 2x)

Äquivalente Definitionen des Kemeny-Verfahrens

- Erzeuge eine kreisfreie Dominanzrelation unter Berücksichtigung so vieler paarweiser Vergleiche der Wähler wie möglich (vgl. symmetrische Differenz und Slater)
- Finde die Präferenzordnung, die dem Median im metrischen Präferenzraum bezüglich der Inversionsmetrik entspricht
- Maximum-Likelihood Methode für SWFs: Jeder Wähler entscheidet sich mit derselben Wahrscheinlichkeit p>0.5 für einen "richtigen" paarweisen Vergleich.



Kemeny: Beispiel

Neun Wähler mit folgenden Präferenzen

3	2	2		
С	a	Р	a	Ь
b	b	a	С	d
d	d	С	b	С
a	С	b	d	a

- Eine Dominanzkante von a nach b wird mit $|\{i \mid a \succ_i b\}| |\{i \mid b \succ_i a\}|$ gewichtet.
- Entferne Kanten mit so geringem aufsummierten Gewicht wie möglich bis der Graph kreisfrei ist.
- Die Kemeny-Präferenzordnung ist c>b>d>a.

Berechnung des Kemeny-Verfahrens

- Satz (Bartholdi et al., 1989): Folgende Probleme sind NPschwer:
 - Kann ich Alternative a durch das Entfernen von Kanten, deren Gewicht in der Summe geringer als k ist, zum Gewinner machen?
 - Ist Alternative a ein Kemeny-Gewinner?
 - Liegt a in der Kemeny-Präferenzordnung vor b?
- Beweis: Reduktion von feedback arc set (vgl. Slater)
- Die letzen beiden Probleme sind Θ_2^p -vollständig.

Das Dodgson-Verfahren

(Charles Dodgson, besser bekannt als Lewis Carroll, 1876)

- Eines der ältesten Condorcet-Verfahren
 - Es gilt als gesichert, dass Dodgson die Arbeiten von Condorcet nicht kannte.
- Ähnlich wie Kemeny, aber ein C3-Verfahren, d.h. es werden die individuellen Präferenzordnungen der Wähler in Betracht genommen
- Def.:Vertausche so wenig Alternativen in den individuellen Präferenzordnungen wie möglich, bis es einen Condorcet-Gewinner gibt. Eine solche Alternative ist ein Dodgson-Gewinner.

Dodgson: Beispiel (nach Fishburn, 1982)

100 Wähler mit folgenden Präferenzen

42	26	21	П
b	a	е	е
a	е	d	a
С	С	b	b
d	b	a	d
е	d	C	C

- Alternative a: Problem ist Alternative b. 14 Wähler der ersten Gruppe müssen ihre ersten beiden Alternativen vertauschen.
- Alternative b: Problem ist Alternative e. 9 Wähler müssen b um zwei Plätze nach oben schieben (18 Vertauschungen).
- Es gewinnt Alternative a.
- Nehmen wir an, die Wähler der letzten Gruppe vertauschen ihre ersten beiden Alternativen (und stärken somit a)
- Jetzt gewinnt Alternative b!
- Das Dodgson-Verfahren ist nicht monoton.

Eigenschaften des Dodgson-Verfahrens

- Satz (Bartholdi et al., 1989): Folgende Probleme sind NPschwer:
 - Kann ich Alternative a durch das Vertauschen von weniger als k Alternativen zum Condorcet-Gewinner machen?
 - Ist Alternative a ein Dodgson-Gewinner?
- Das zweite Problem ist Θ_2^p -vollständig und gilt als das erste "natürliche" Problem, das für diese Klasse vollständig ist.
- Weitere Nachteile des Dodgson-Verfahrens
 - Es kann ein Condorcet-Verlierer ausgewählt werden.
 - Gewinner liegen möglicherweise nicht in der Good-Menge.
 - Es wird möglicherweise die schlechteste Alternative bezüglich der Kemeny-Präferenzordnung ausgewählt.

Kollektive Präferenzordnungen

- Social welfare function: $f: \mathbb{R}^n \to \mathbb{R}$
- Def.: Eine SWF ist Pareto-optimal wenn a>b immer gilt wenn alle Wähler a über b bevorzugen.
- Def.: Eine SWF ist diktatorisch wenn es einen Wähler gibt, so dass a>b immer gilt wenn dieser Wähler a über b bevorzugt.
 - Der Diktator bestimmt die soziale Präferenz unabhängig von allen anderen Wählern.
- Def.: Eine SWF ist unabhängig von irrelevanten
 Alternativen (IIA), wenn a>b oder b>a nur von den individuellen Präferenzen zwischen a und b abhängt.

Arrows Unmöglichkeitssatz

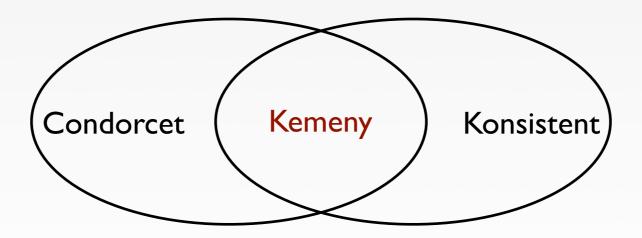
- Satz (Arrow, 1951): Jede Pareto-optimale SWF auf mehr als zwei Alternativen, die IIA erfüllt, ist diktatorisch.
 - Mit Abstand das bekannteste Resultat der social choice theory
 - Einfach zu zeigende schwächere Variante: Es gibt keine anonyme, neutrale und monotone SWF aus mehr als zwei Alternativen, die IIA erfüllt.
 - Beweis: Satz von May & Condorcet Paradoxon

Auswege

- Modifikation des SWF-Konzepts
- ▶ Eine der Eigenschaften wird vernachlässigt
 - Pareto-Optimalität: Vernachlässigen dieser Bedingung lässt zusätzlich lediglich noch "antidiktatorische" SWFs zu
 - Es bleibt nur IIA.

Konsistente Condorcet SWFs

- Gibt es konsistente SWFs, die die Condorcet-Eigenschaft erfüllen?
 - Konsistenz ist für SWFs offenbar eine geringere Einschränkung.
- Satz (Young et al., 1978): Kemenys SWF ist die einzige Condorcet SWF, die neutral und konsistent ist.



Die letzte Folie

	Konsistent	Condorcet	
SCC	Punkteverfahren (in P) z.B. Borda	Condorcetverfahren z.B. MC (in P) oder Banks (NP-schwer)	
SWF	Kemeny (NP-schwer)		

